
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 5 - HTTP + REST

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

HW1 Discussion, due tomorrow at 10:00pm EST
Team formation out tomorrow, due next Friday

Today’s session:

Lesson Q&A: Architecture, HTTP & REST

Activity: Testing REST APIs with Postman

Activity (Time permitting): REST transcript server extensions

TypeScript Warmup

const stringList: string[] = [];

function findStringStartingWith(prefix: string): string {

 return stringList.find(eachString => eachString.startsWith(prefix));

}
 Type 'string | undefined' is not assignable to type 'string'.

 Type 'undefined' is not assignable to type 'string'.

const stringList: string[] = [];

function findStringStartingWith(prefix: string): string {

 const foundStr = stringList.find(eachString => eachString.startsWith(prefix));

 if (foundStr === undefined) {

 return 'String not found';

 }

 return foundStr;

}

No type errors (not sure that it makes sense to return the string
‘String not found’, but hopefully you get the idea...

Lesson 3.1 Learning Objectives
Software Architectures

• You should now be able to:

• explain why software architecture is important

• list a few of the properties that an architecture may have (the "ilities")

• describe the basic ideas of the following architectures, with examples and pictures

• monolithic

• layered

• pipeline

• microkernel

• event-driven

• microservice

Lecture 3.2 Learning Objectives
HTTP Basics

• You should now be able to:

• Explain the basic structure of the HTTP protocol

• Define the following terms in the context of HTTP:

• client, server

• request, response

• message header

• message body

• List the steps in the basic flow of an HTTP request

• Explain what is meant by the following:

• HTTP is stateless but not sessionless

GET /docs/index.html HTTP/1.1

Host: www.nowhere123.com

Accept: image/gif, image/jpeg, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

(blank line)

Lecture 3.3 Learning Objectives
REST Overview

• By the end of this lesson you should be able to:

• Explain the basic principles of RESTful protocols

• Examine a protocol and suggest ways in which it either adheres to or
violates the REST principles.

• Anti-examples:

• /getCity/losangeles

• /getCitybyID/50654

• /Cities.php?id=50654

Example REST API

POST /transcripts

 -- adds a new student to the database,

 -- returns an ID for this student.

 -- requires a body parameter 'name', url-encoded (eg name=avery)

 -- Multiple students may have the same name.

GET /transcripts/:ID

 -- returns transcript for student with given ID. Fails if no such student

DELETE /transcripts/:ID

 -- deletes transcript for student with the given ID, fails if no such student 
POST /transcripts/:studentID/:courseNumber

 -- adds an entry in this student's transcript with given name and course.

 -- Requires a body parameter 'grade', url-encoded

 -- Fails if there is already an entry for this course in the student's transcript

GET /transcripts/:studentID/:courseNumber

 -- returns the student's grade in the specified course.

 -- Fails if student or course is missing.

GET /studentids?name=string

 -- returns list of IDs for student with the given name

Lesson 3.4 Learning Objectives
REST Implementation

• You should now be prepared to:

• Explain the structure of a server in express.js

• Define 'middleware' and 'route' in the context of an express.js server

• Build a server for a simple REST protocol in express.js

Activity: Postman
REST API Testing

https://neu-se.github.io/CS4530-CS5500-Spring-2021/tutorials/week3-apis

https://neu-se.github.io/CS4530-CS5500-Spring-2021/tutorials/week3-apis

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

